10 research outputs found

    Incremental Distance Transforms (IDT)

    Get PDF
    A new generic scheme for incremental implementations of distance transforms (DT) is presented: Incremental Distance Transforms (IDT). This scheme is applied on the cityblock, Chamfer, and three recent exact Euclidean DT (E2DT). A benchmark shows that for all five DT, the incremental implementation results in a significant speedup: 3.4×−10×. However, significant differences (i.e., up to 12.5×) among the DT remain present. The FEED transform, one of the recent E2DT, even showed to be faster than both city-block and Chamfer DT. So, through a very efficient incremental processing scheme for DT, a relief is found for E2DT’s computational burden

    NEW ALGEBRAIC INVARIANTS OF IMPLICIT POLYNOMIALS FOR 3D OBJECT RECOGNITION

    Get PDF
    Abstract In this paper, we present a method for deriving the rotation invariants of 2 nd and 4 th degree implicit polynomials and we build a system for 3D object recognition using the derived invariants. Our results show that invariants derived in this paper are stable and the success of the recognition is high when the polynomial fit is successful

    A 3D scanner for transparent glass

    Get PDF
    Many practical tasks in industry, such as automatic inspection or robot vision, often require the scanning of three-dimensional shapes by use of non-contact techniques. However, few methods have been proposed to measure three-dimensional shapes of transparent objects because of the difficulty of dealing with transparency and specularity of the surface. This paper presents a 3D scanner for transparent glass objects based on Scanning From Heating (SFH), a new method that makes use of local surface heating and thermal imaging

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Binary and nonbinary description of hypointensity for search and retrieval of brain MR images

    Get PDF
    Diagnosis accuracy in the medical field, is mainly affected by either lack of sufficient understanding of some diseases or the inter/intra-observer variability of the diagnoses. We believe that mining of large medical databases can help improve the current status of disease understanding and decision making. In a previous study based on binary description of hypointensity in the brain, it was shown that brain iron accumulation shape provides additional information to the shape-insensitive features, such as the total brain iron load, that are commonly used in clinics. This paper proposes a novel, nonbinary description of hypointensity in the brain based on principal component analysis. We compare the complementary and redundant information provided by the two descriptions using Kendall's rank correlation coefficient in order to better understand the individual descriptions of iron accumulation in the brain and obtain a more robust and accurate search and retrieval system

    VIDEO-BASED DRIVER IDENTIFICATION USING LOCAL APPEARANCE FACE RECOGNITION

    No full text
    In this paper, we present a person identification system for vehicular environments. The proposed system uses face images of the driver and utilizes local appearance-based face recognition over the video sequence. To perform local appearance-based face recognition, the input face image is decomposed into non-overlapping blocks and on each local block discrete cosine transform is applied to extract the local features. The extracted local features are then combined to construct the overall feature vector. This process is repeated for each video frame. The distribution of the feature vectors over the video are modelled using a Gaussian distribution function at the training stage. During testing, the feature vector extracted from each frame is compared to each person’s distribution, and individual likelihood scores are generated. Finally, the person is identified as the one who has maximum joint-likelihood score. To assess the performance of the developed system, extensive experiments are conducted on different identification scenarios, such as closed set identification, open set identification and verification. For the experiments a subset of the CIAIR-HCC database, an in-vehicle data corpus that is collected at the Nagoya University, Japan is used. We show that, despite varying environment and illumination conditions, that commonly exist in vehicular environments, it is possible to identify individuals robustly from their face images. Index Terms — Local appearance face recognition, vehicle environment, discrete cosine transform, fusion. 1
    corecore